👉 栈:如何实现浏览器的前进和后退功能?

如何理解栈?🤔

关于“栈”,我有一个非常贴切的例子,就是一摞叠在一起的盘子。我们平时放盘子的时候,都是从下往上一个一个放;取的时候,我们也是从上往下一个一个地依次取,不能从中间任意抽出。🚀 后进者先出,先进者后出,这就是典型的“栈”结构。

从栈的操作特性上来看,栈是一种“操作受限”的线性表,只允许在一端插入和删除数据。

从功能上来说,数组或链表确实可以替代栈,但你要知道,特定的数据结构是对特定场景的抽象,而且,数组或链表暴露了太多的操作接口,操作上的确灵活自由,但使用时就比较不可控,自然也就更容易出错。

当某个数据集合只涉及在一端插入和删除数据,并且满足后进先出、先进后出的特性,我们就应该首选“栈”这种数据结构。

如何实现一个栈?🧐

从刚才栈的定义里,我们可以看出,栈主要包含两个操作,入栈和出栈,也就是在栈顶插入一个数据和从栈顶删除一个数据。

实际上,栈既可以用数组来实现,也可以用链表来实现。用数组实现的栈,我们叫作顺序栈,用链表实现的栈,我们叫作链式栈。

// 基于数组实现的顺序栈
public class ArrayStack {
  private String[] items;  // 数组
  private int count;       // 栈中元素个数
  private int n;           //栈的大小

  // 初始化数组,申请一个大小为n的数组空间
  public ArrayStack(int n) {
    this.items = new String[n];
    this.n = n;
    this.count = 0;
  }

  // 入栈操作
  public boolean push(String item) {
    // 数组空间不够了,直接返回false,入栈失败。
    if (count == n) return false;
    // 将item放到下标为count的位置,并且count加一
    items[count] = item;
    ++count;
    return true;
  }

  // 出栈操作
  public String pop() {
    // 栈为空,则直接返回null
    if (count == 0) return null;
    // 返回下标为count-1的数组元素,并且栈中元素个数count减一
    String tmp = items[count-1];
    --count;
    return tmp;
  }
}

了解了定义和基本操作,那它的操作时间、空间复杂度呢?

不管是顺序栈还是链式栈,我们存储数据只需要一个大小为 n 的数组就够了。在入栈和出栈过程中,只需要一两个临时变量存储空间,所以空间复杂度是 O(1)。

注意,这里存储数据需要一个大小为 n 的数组,并不是说空间复杂度就是 O(n)。因为,这 n 个空间是必须的,无法省掉。所以我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。

空间复杂度分析是不是很简单?时间复杂度也不难。不管是顺序栈还是链式栈,入栈、出栈只涉及栈顶个别数据的操作,所以时间复杂度都是 O(1)。

支持动态扩容的顺序栈

刚才那个基于数组实现的栈,是一个固定大小的栈,也就是说,在初始化栈时需要事先指定栈的大小。当栈满之后,就无法再往栈里添加数据了。尽管链式栈的大小不受限,但要存储 next 指针,内存消耗相对较多。那我们如何基于数组实现一个可以支持动态扩容的栈呢?

如何来实现一个支持动态扩容的数组的吗?当数组空间不够时,我们就重新申请一块更大的内存,将原来数组中数据统统拷贝过去。这样就实现了一个支持动态扩容的数组。

所以,如果要实现一个支持动态扩容的栈,我们只需要底层依赖一个支持动态扩容的数组就可以了。当栈满了之后,我们就申请一个更大的数组,将原来的数据搬移到新数组中。

快慢指针奇数

动态扩容的顺序栈一般并不常用,所以这里主要是进行复杂度分析。

对于出栈来说,我们不会涉及到内存的重新申请和数据搬移,所以出栈的时间复杂度是 O(1) 。但是对于入栈来说,情况就不一样了。当栈中有空闲空间时,入栈操作的复杂度就是 O(1),单当空间不足时,需要进行内存重新申请和数据搬移,所以复杂度就变成了 O(n)。

也就说,入栈操作,最好的时间复杂度是 O(1) ,而最坏的时间复杂度是 O(n)。那么平均情况下的时间复杂度是多少?

为了方便分析,先做一些假设和定义:

  • 栈空间不够时,我们需要重新申请一个原来大小两倍的数组
  • 为了简化分析,假设只有入栈操作没有出栈操作
  • 定义不涉及内存搬移的入栈操作为 simple-push 操作,时间复杂度为 O(1)

如果当前栈大小为 K,并且已满,当再有新的数据要入栈时,就需要重新申请 2 倍大小的内存,并且做 K 个数据的搬移操作,然后再入栈。但是,接下来的 K-1 次入栈操作,我们都不需要再重新申请内存和搬移数据,所以这 K-1 次入栈操作都只需要一个 simple-push 操作就可以完成。为了让你更加直观地理解这个过程,我画了一张图。

动态栈的入栈时间复杂度

这 K 次入栈操作,总共涉及了 K 个数据的搬移,以及 K 次 simple-push 操作。将 K 个数据搬移均摊到 K 次入栈操作,那每个入栈操作只需要一个数据搬移和一个 simple-push 操作。以此类推,入栈操作的均摊时间复杂度就为 O(1)。

通过这个例子的实战分析,也印证了前面讲到的,均摊时间复杂度一般都等于最好情况时间复杂度。因为在大部分情况下,入栈操作的时间复杂度 O 都是 O(1),只有在个别时刻才会退化为 O(n),所以把耗时多的入栈操作的时间均摊到其他入栈操作上,平均情况下的耗时就接近 O(1)。

栈在函数调用中的应用

栈在软件工程中的实际应用。栈作为一个比较基础的数据结构,应用场景还是蛮多的。其中,比较经典的一个应用场景就是函数调用栈。

我们知道,操作系统给每个线程分配了一块独立的内存空间,这块内存被组织成“栈”这种结构, 用来存储函数调用时的临时变量。每进入一个函数,就会将临时变量作为一个栈帧入栈,当被调用函数执行完成,返回之后,将这个函数对应的栈帧出栈。为了让你更好地理解,我们一块来看下这段代码的执行过程。

int main() {
   int a = 1;
   int ret = 0;
   int res = 0;
   ret = add(3, 5);
   res = a + ret;
   printf("%d", res);
   reuturn 0;
}

int add(int x, int y) {
   int sum = 0;
   sum = x + y;
   return sum;
}

从代码中我们可以看出,main() 函数调用了 add() 函数,获取计算结果,并且与临时变量 a 相加,最后打印 res 的值。为了让你清晰地看到这个过程对应的函数栈里出栈、入栈的操作,我画了一张图。图中显示的是,在执行到 add() 函数时,函数调用栈的情况。

函数调用栈

栈在表达式值中的应用

编译器如何利用栈来实现表达式求值。

为了方便解释,我将算术表达式简化为只包含加减乘除四则运算,比如:34+13*9+44-12/3。对于这个四则运算,我们人脑可以很快求解出答案,但是对于计算机来说,理解这个表达式本身就是个挺难的事儿。

实际上,编译器就是通过两个栈来实现的。其中一个保存操作数的栈,另一个是保存运算符的栈。我们从左向右遍历表达式,当遇到数字,我们就直接压入操作数栈;当遇到运算符,就与运算符栈的栈顶元素进行比较。

如果比运算符栈顶元素的优先级高,就将当前运算符压入栈;如果比运算符栈顶元素的优先级低或者相同,从运算符栈中取栈顶运算符,从操作数栈的栈顶取 2 个操作数,然后进行计算,再把计算完的结果压入操作数栈,继续比较。

例如:计算 5 + 3 * 9 - 16 / 4

首先定义两个栈,第一个为 S1,只放操作符,第二个栈为 S2,只放数字;但是我们始终保持最多只有一个操作符。在数学上,乘除同级,比加减优先级高。

  1. 5 是个数字,放入 S2 中。(S2:5)
  2. '+' 是操作符,放进 S1 中。(S2:5,S1:+)
  3. 3 是个数字,放进 S2 中。(S2:5、3,S1:+)
  4. '*' 是个乘法操作符,而且优先级高于加减,所以,将 S2 中最后一位取出和'*'后面的数字相乘,将等到的结果 27 放入 S2 中(S2:5、27,S1:+)
  5. '-' 是个操作符,应当放入 S1 中,但是 S1 中已经存在操作符,并且加减属于同级运算,所以我们先计算加法,将 S2 中的数据做加法运算得到 32 放入 S2 中,将'-'放入 S1 中(S2:32、16,S1:-)
  6. '' 是个除法操作符,而且优先级高于加减,所以,将 S2 中最后一位取出和''后面的数字相除,将等到的结果放入 S2 中(S2:32、4,S1:-)
  7. 无后续计算,则将 S2 中的数字使用 S1 剩余的'-'做减法得到 28,所以最终结果就是 28

上面运算不包含括号运算,只是基本四则混合运算。

关于含括号的可以看这里 C/C++带括号四则运算 - CSDN 博客 以及中缀转后缀利用栈将 (中缀表达式) 转换成 (后缀表达式)

栈在括号匹配中的应用

除了用栈来实现表达式求值,我们还可以借助栈来检查表达式中的括号是否匹配。

我们同样简化一下背景。我们假设表达式中只包含三种括号,圆括号 ()、方括号[]和花括号{},并且它们可以任意嵌套。比如,{[]()[{}]}或[{()}([])]等都为合法格式,而{[}()]或[({)]为不合法的格式。那我现在给你一个包含三种括号的表达式字符串,如何检查它是否合法呢?

这里也可以用栈来解决。我们用栈来保存未匹配的左括号,从左到右依次扫描字符串。当扫描到左括号时,则将其压入栈中;当扫描到右括号时,从栈顶取出一个左括号。如果能够匹配,比如“(”跟“)”匹配,“[”跟“]”匹配,“{”跟“}”匹配,则继续扫描剩下的字符串。如果扫描的过程中,遇到不能配对的右括号,或者栈中没有数据,则说明为非法格式。

当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法格式;否则,说明有未匹配的左括号,为非法格式。

📜 解答开篇

如何通过栈实现游览器的前进和后退?

我们使用两个栈,X 和 Y,我们把首次浏览的页面依次压入栈 X,当点击后退按钮时,再依次从栈 X 中出栈,并将出栈的数据依次放入栈 Y。当我们点击前进按钮时,我们依次从栈 Y 中取出数据,放入栈 X 中。当栈 X 中没有数据时,那就说明没有页面可以继续后退浏览了。当栈 Y 中没有数据,那就说明没有页面可以点击前进按钮浏览了。

比如你顺序查看了 a,b,c 三个页面,我们就依次把 a,b,c 压入栈,这个时候,两个栈的数据就是这个样子:

当你通过浏览器的后退按钮,从页面 c 后退到页面 a 之后,我们就依次把 c 和 b 从栈 X 中弹出,并且依次放入到栈 Y。这个时候,两个栈的数据就是这个样子:

这个时候你又想看页面 b,于是你又点击前进按钮回到 b 页面,我们就把 b 再从栈 Y 中出栈,放入栈 X 中。此时两个栈的数据是这个样子:

这个时候,你通过页面 b 又跳转到新的页面 d 了,页面 c 就无法再通过前进、后退按钮重复查看了,所以需要清空栈 Y。

✅ 总结

  • 栈是一种操作受限的数据结构,只支持入栈和出栈操作。
  • 后进先出是它最大的特点。
  • 栈既可以通过数组实现,也可以通过链表来实现。
  • 不管基于数组还是链表,入栈、出栈的时间复杂度都为 O(1)。
author image
SpiritLing