链表(Linked list) ⚡

链表练习和 Leetcode 题解:

源代码:https://spiritling.coding.net/public/public/AaDS-docs-code/git/files/master/LinkedList 博客:https://blog.spiritling.cn/posts/4970029a/https://dev.blog.spiritling.pub/posts/4970029a/

学习链表有什么用呢?🤔 为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是 LRU 缓存淘汰算法。

缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如常见的 CPU 缓存、数据库缓存、浏览器缓存等等。

缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。常见的策略有三种:先进先出策略 FIFO(First In,First Out)、最少使用策略 LFU(Least Frequently Used)、最近最少使用策略 LRU(Least Recently Used)。

如何用链表来实现 LRU 缓存淘汰策略呢?🤔

五花八门的链表结构 🎨

相比数组,链表是一种稍微复杂一点的数据结构。对于初学者来说,掌握起来也要比数组稍难一些。这两个非常基础、非常常用的数据结构,我们常常将会放到一块儿来比较。所以我们先来看,这两者有什么区别。

我们先从底层的存储结构上来看一看。

从图中我们看到,数组需要一块连续的内存空间来存储,对内存的要求比较高。如果我们申请一个 100MB 大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的剩余总可用空间大于 100MB,仍然会申请失败。

而链表恰恰相反,它并不需要一块连续的内存空间,它通过“指针”将一组零散的内存块串联起来使用,所以如果我们申请的是 100MB 大小的链表,根本不会有问题。

数组与链表

链表结构五花八门,今天我重点给你介绍三种最常见的链表结构,它们分别是:单链表、双向链表和循环链表

单链表

链表通过指针将一组零散的内存块串联在一起。其中,我们把内存块称为链表的“结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址。如图所示,我们把这个记录下个结点地址的指针叫作后继指针 next

单链表

从我画的单链表图中,你应该可以发现,其中有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。我们习惯性地把第一个结点叫作头结点,把最后一个结点叫作尾结点。其中,头结点用来记录链表的基地址。有了它,我们就可以遍历得到整条链表。而尾结点特殊的地方是:指针不是指向下一个结点,而是指向一个空地址 NULL,表示这是链表上最后一个结点。

与数组一样,链表也支持数据的查找、插入和删除操作。

在进行数组的插入、删除操作时,为了保持内存数据的连续性,需要做大量的数据搬移,所以时间复杂度是 O(n)。而在链表中插入或者删除一个数据,我们并不需要为了保持内存的连续性而搬移结点,因为链表的存储空间本身就不是连续的。所以,在链表中插入和删除一个数据是非常快速的。

从图中我们可以看出,针对链表的插入和删除操作,我们只需要考虑相邻结点的指针改变,所以对应的时间复杂度是 O(1)。

链表插入删除

但是,有利就有弊。链表要想随机访问第 k 个元素,就没有数组那么高效了。因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。

你可以把链表想象成一个队伍,队伍中的每个人都只知道自己后面的人是谁,所以当我们希望知道排在第 k 位的人是谁的时候,我们就需要从第一个人开始,一个一个地往下数。所以,链表随机访问的性能没有数组好,需要 O(n) 的时间复杂度。

双向链表

开发中常用的一种链表。

双向链表

单向链表只有一个方向,结点只有一个后继指针 next 指向后面的结点。而双向链表,顾名思义,它支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。

单向链表只有一个方向,结点只有一个后继指针 next 指向后面的结点。而双向链表,顾名思义,它支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。

双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。

从结构上来看,双向链表可以支持 O(1) 时间复杂度的情况下找到前驱结点,正是这样的特点,也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。

单链表的插入、删除操作的时间复杂度已经是 O(1) 了,双向链表还能再怎么高效呢?别着急,刚刚的分析比较偏理论,很多数据结构和算法书籍中都会这么讲,但是这种说法实际上是不准确的,或者说是有先决条件的。

删除操作

在实际的软件开发中,从链表中删除一个数据无外乎这两种情况:

  • 删除结点中“值等于某个给定值”的结点;
  • 删除给定指针指向的结点。

对于第一种情况,不管是单链表还是双向链表,为了查找到值等于给定值的结点,都需要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,然后再通过我前面讲的指针操作将其删除。查找是 O(n)

尽管单纯的删除操作时间复杂度是 O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为 O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为 O(n)。

对于第二种情况,我们已经找到了要删除的结点,但是删除某个结点 q 需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到 p->next=q,说明 p 是 q 的前驱结点。

但是对于双向链表来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作需要 O(n) 的时间复杂度,而双向链表只需要在 O(1) 的时间复杂度内就搞定了!

同理,如果我们希望在链表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优势。双向链表可以在 O(1) 时间复杂度搞定,而单向链表需要 O(n) 的时间复杂度。你可以参照我刚刚讲过的删除操作自己分析一下。

除了插入、删除操作有优势之外,对于一个有序链表,双向链表的按值查询的效率也要比单链表高一些。因为,我们可以记录上次查找的位置 p,每次查询时,根据要查找的值与 p 的大小关系,决定是往前还是往后查找,所以平均只需要查找一半的数据。

现在,你有没有觉得双向链表要比单链表更加高效呢?这就是为什么在实际的软件开发中,双向链表尽管比较费内存,但还是比单链表的应用更加广泛的原因。如果你熟悉 Java 语言,你肯定用过 LinkedHashMap 这个容器。如果你深入研究 LinkedHashMap 的实现原理,就会发现其中就用到了双向链表这种数据结构。

实际上,这里有一个更加重要的知识点需要你掌握,那就是用空间换时间的设计思想。当内存空间充足的时候,如果我们更加追求代码的执行速度,我们就可以选择空间复杂度相对较高、但时间复杂度相对很低的算法或者数据结构。相反,如果内存比较紧缺,比如代码跑在手机或者单片机上,这个时候,就要反过来用时间换空间的设计思路。

还是开篇缓存的例子。缓存实际上就是利用了空间换时间的设计思想。如果我们把数据存储在硬盘上,会比较节省内存,但每次查找数据都要询问一次硬盘,会比较慢。但如果我们通过缓存技术,事先将数据加载在内存中,虽然会比较耗费内存空间,但是每次数据查询的速度就大大提高了。

✨ 对于执行较慢的程序,可以通过消耗更多的内存(空间换时间)来进行优化;

✨ 而消耗过多内存的程序,可以通过消耗更多的时间(时间换空间)来降低内存的消耗。

循环列表

循环链表是一种特殊的单链表。

循环链表也很简单。它跟单链表唯一的区别就在尾结点。我们知道,单链表的尾结点指针指向空地址,表示这就是最后的结点了。而循环链表的尾结点指针是指向链表的头结点。

循环链表

和单链表相比,循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。比如著名的 约瑟夫问题 。尽管用单链表也可以实现,但是用循环链表实现的话,代码就会简洁很多。

链表 VS 数组性能大比拼 💪

数组和链表是两种截然不同的内存组织方式。正是因为内存存储的区别,它们插入、删除、随机访问操作的时间复杂度正好相反。

数组 链表
插入删除 O(n) O(1)
随机访问 O(1) O(n)

不过,数组和链表的对比,并不能局限于时间复杂度。而且,在实际的软件开发中,不能仅仅利用复杂度分析就决定使用哪个数据结构来存储数据。

数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。

数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。链表本身没有大小的限制,天然地支持动态扩容,我觉得这也是它与数组最大的区别。

解答开篇 🎉

如何基于链表实现 LRU 缓存淘汰算法?🤔

思路

我们维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。当有一个新的数据被访问时,我们从链表头开始顺序遍历链表。

  1. 如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。

  2. 如果此数据没有在缓存链表中,又可以分为两种情况:

    • 如果此时缓存未满,则将此结点直接插入到链表的头部;
    • 如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。

复杂度分析

因为不管缓存有没有满,我们都需要遍历一遍链表,所以这种基于链表的实现思路,缓存访问的时间复杂度为 O(n)。

实际上,我们可以继续优化这个实现思路,比如引入散列表(Hash table)来记录每个数据的位置,将缓存访问的时间复杂度降到 O(1)。因为要涉及我们还没有讲到的数据结构,所以这个优化方案,现在就不详细说了。

扩展 ①-如何轻松写出正确的链表代码 ⚡

技巧一:理解指针或引用的含义 🌐

事实上,看懂链表的结构并不是很难,但是一旦把它和指针混在一起,就很容易让人摸不着头脑。所以,要想写对链表代码,首先就要理解好指针。

我们知道,有些语言有“指针”的概念,比如 C 语言;有些语言没有指针,取而代之的是“引用”,比如 Java、Python。不管是“指针”还是“引用”,实际上,它们的意思都是一样的,都是存储所指对象的内存地址。

🚀 将某个变量赋值给指针,实际上就是将这个变量的地址赋值给指针,或者反过来说,指针中存储了这个变量的内存地址,指向了这个变量,通过指针就能找到这个变量。

在编写链表代码的时候,我们经常会有这样的代码:p->next=q。这行代码是说,p 结点中的 next 指针存储了 q 结点的内存地址。

还有一个更复杂的,也是我们写链表代码经常会用到的:p->next=p->next->next。这行代码表示,p 结点的 next 指针存储了 p 结点的下下一个结点的内存地址。

技巧二:警惕指针丢失和内存泄漏 🌐

不知道你有没有这样的感觉,写链表代码的时候,指针指来指去,一会儿就不知道指到哪里了。所以,我们在写的时候,一定注意不要弄丢了指针。

链表

如图所示,我们希望在结点 a 和相邻的结点 b 之间插入结点 x,假设当前指针 p 指向结点 a。如果我们将代码实现变成下面这个样子,就会发生指针丢失和内存泄露。

p->next = x;  // 将p的next指针指向x结点;
x->next = p->next;  // 将x的结点的next指针指向b结点;

初学者经常会在这儿犯错。p->next 指针在完成第一步操作之后,已经不再指向结点 b 了,而是指向结点 x。第 2 行代码相当于将 x 赋值给 x->next,自己指向自己。因此,整个链表也就断成了两半,从结点 b 往后的所有结点都无法访问到了。

对于有些语言来说,比如 C 语言,内存管理是由程序员负责的,如果没有手动释放结点对应的内存空间,就会产生内存泄露。所以,我们插入结点时,一定要注意操作的顺序,要先将结点 x 的 next 指针指向结点 b,再把结点 a 的 next 指针指向结点 x,这样才不会丢失指针,导致内存泄漏。所以,对于刚刚的插入代码,我们只需要把第 1 行和第 2 行代码的顺序颠倒一下就可以了。

同理,删除链表结点时,也一定要记得手动释放内存空间,否则,也会出现内存泄漏的问题。

技巧三:利用哨兵简化实现难度

如果我们在结点 p 后面插入一个新的结点,只需要下面两行代码就可以搞定。

new_node->next = p->next;
p->next = new_node;

但是,当我们要向一个空链表中插入第一个结点,刚刚的逻辑就不能用了。我们需要进行下面这样的特殊处理,其中 head 表示链表的头结点。所以,从这段代码,我们可以发现,对于单链表的插入操作,第一个结点和其他结点的插入逻辑是不一样的。

if (head == null) {
    head = new_node;
}

如果要删除结点 p 的后继结点,我们只需要一行代码就可以搞定。

p->next = p->next->next;

但是,如果我们要删除链表中的最后一个结点,前面的删除代码就不 work 了。跟插入类似,我们也需要对于这种情况特殊处理。写成代码是这样子的:

if (head->next == null) {
   head = null;
}

前面的一步一步分析,我们可以看出,针对链表的插入、删除操作,需要对插入第一个结点和删除最后一个结点的情况进行特殊处理。这样代码实现起来就会很繁琐,不简洁,而且也容易因为考虑不全而出错。如何来解决这个问题呢?

技巧三中提到的哨兵就要登场了。哨兵,解决的是国家之间的边界问题。同理,这里说的哨兵也是解决“边界问题”的,不直接参与业务逻辑。

还记得如何表示一个空链表吗?head=null 表示链表中没有结点了。其中 head 表示头结点指针,指向链表中的第一个结点。

如果我们引入哨兵结点,在任何时候,不管链表是不是空,head 指针都会一直指向这个哨兵结点。我们也把这种有哨兵结点的链表叫带头链表。相反,没有哨兵结点的链表就叫作不带头链表

下图你可以发现,哨兵结点是不存储数据的。因为哨兵结点一直存在,所以插入第一个结点和插入其他结点,删除最后一个结点和删除其他结点,都可以统一为相同的代码实现逻辑了。

链表

实际上,这种利用哨兵简化编程难度的技巧,在很多代码实现中都有用到,比如插入排序、归并排序、动态规划等。

代码一:

// 在数组a中,查找key,返回key所在的位置
// 其中,n表示数组a的长度
int find(char* a, int n, char key) {
  // 边界条件处理,如果a为空,或者n<=0,说明数组中没有数据,就不用while循环比较了
  if(a == null || n <= 0) {
    return -1;
  }

  int i = 0;
  // 这里有两个比较操作:i<n和a[i]==key.
  while (i < n) {
    if (a[i] == key) {
      return i;
    }
    ++i;
  }

  return -1;
}

代码二:

// 在数组a中,查找key,返回key所在的位置
// 其中,n表示数组a的长度
// 我举2个例子,你可以拿例子走一下代码
// a = {4, 2, 3, 5, 9, 6}  n=6 key = 7
// a = {4, 2, 3, 5, 9, 6}  n=6 key = 6
int find(char* a, int n, char key) {
  if(a == null || n <= 0) {
    return -1;
  }

  // 这里因为要将a[n-1]的值替换成key,所以要特殊处理这个值
  if (a[n-1] == key) {
    return n-1;
  }

  // 把a[n-1]的值临时保存在变量tmp中,以便之后恢复。tmp=6。
  // 之所以这样做的目的是:希望find()代码不要改变a数组中的内容
  char tmp = a[n-1];
  // 把key的值放到a[n-1]中,此时a = {4, 2, 3, 5, 9, 7}
  a[n-1] = key;

  int i = 0;
  // while 循环比起代码一,少了i<n这个比较操作
  while (a[i] != key) {
    ++i;
  }

  // 恢复a[n-1]原来的值,此时a= {4, 2, 3, 5, 9, 6}
  a[n-1] = tmp;

  if (i == n-1) {
    // 如果i == n-1说明,在0...n-2之间都没有key,所以返回-1
    return -1;
  } else {
    // 否则,返回i,就是等于key值的元素的下标
    return i;
  }
}

对比两段代码,在字符串 a 很长的时候,比如几万、几十万,你觉得哪段代码运行得更快点呢?答案是代码二,因为两段代码中执行次数最多就是 while 循环那一部分。第二段代码中,我们通过一个哨兵 a[n-1] = key,成功省掉了一个比较语句 i < n,不要小看这一条语句,当累积执行万次、几十万次时,累积的时间就很明显了。

当然,这只是为了举例说明哨兵的作用,你写代码的时候千万不要写第二段那样的代码,因为可读性太差了。大部分情况下,我们并不需要如此追求极致的性能。

技巧四:重点留意边界条件处理

  • 🤔 如果链表为空时,代码是否能正常工作?
  • 🤔 如果链表只包含一个结点时,代码是否能正常工作?
  • 🤔 如果链表只包含两个结点时,代码是否能正常工作?
  • 🤔 代码逻辑在处理头结点和尾结点的时候,是否能正常工作?

技巧五:举例画图,辅助思考

对于稍微复杂的链表操作,比如前面我们提到的单链表反转,指针一会儿指这,一会儿指那,一会儿就被绕晕了。

所以这个时候就要使用大招了,举例法画图法

比如在扩展 2 中,判断回文字符串时,用到了此方法,相应的图片也放置在下面。

看图写代码,就很容易了。

技巧六:多写多练,没有捷径

精选了 5 个常见的链表操作:

  • 单链表反转
  • 链表中环的检测
  • 两个有序的链表合并
  • 删除链表倒数第 n 个结点
  • 求链表的中间结点

🚀 写链表代码是最考验逻辑思维能力的

扩展 ②-使用单链表判断字符串是否为回文 ⚡

我们学习了链表结构,所以通过链表来判断回文字符串

首先将字符串转为以下单链表结构:

public class SingleLinkList<T>
{
    public T Val { get; set; }
    public SingleLinkList<T> NextNode { get; set; }
}
/**
 * 当然这种也行
 * public class ListNode {
 *     public int val;
 *     public ListNode next;
 *     public ListNode(int x) { val = x; }
 * }
 */

通过单链表结构来判断是否为回文,在 leetcode 上有对应的链表回文判断问题:#234,此问题是回文链表,并不是纯的回文字符串。

源代码地址

public bool Judge()
{
    if(this.SingleLinkLists==null || SingleLinkLists.NextNode == null)
    {
        return true;
    }
    var fastNode = this.SingleLinkLists;
    var slowNode = this.SingleLinkLists;
    // 记录反转后的链表(此处可回忆下反转列表的过程)
    SingleLinkList<char> guardNode = null;
    // step1: 找到中心节点并反转慢指针前的节点(多画图加深理解)
    while (fastNode != null && fastNode?.NextNode != null)
    {
        // 快指针每次前进两个
        fastNode = fastNode.NextNode.NextNode;
        // 存放反转链表
        var tempNode = guardNode;
        // 将慢指针给反转列表
        guardNode = slowNode;
        // 慢指针的下一个赋值给慢指针
        slowNode = slowNode.NextNode;
        // 反转指针下一个指向原来反转数据
        guardNode.NextNode = tempNode;
    }

    // step2:完成反转后分别设置左右链表的对比起点
    // 可以不用增加两个新的变量直接用guardNode和slowNode
    // 但是代码可读性同样重要,声明left和right
    SingleLinkList<char> left = null;
    SingleLinkList<char> right = null;
    right = fastNode == null ? slowNode : slowNode.NextNode;
    left = guardNode;

    // step3:对比左右链表的值
    while (right != null)
    {
        if (right.Val != left.Val)
        {
            return false;
        }
        right = right.NextNode;
        left = left.NextNode;
    }
    return true;
}

图示分析快慢指针,当为偶数时:

快慢指针偶数

图示分析快慢指针,当为奇数时:

快慢指针奇数

author image
SpiritLing